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Abstract: An effective force field for hydrophobic interactions is developed based on a modified potential-
of-mean-force (PMF) expansion of the effective many-body interactions between nonpolar molecules in water.
For the simplest nonpolar solutes in water, hard particles, the modified PMF expansion is exact in both limiting
cases of infinite separation and perfect overlap. The hydrophobic interactions are parametrized by using the
information-theory model of hydrophobic hydration. The interactions between nonpolar solutes are short-
ranged and can be evaluated efficiently on a computer. The force field is compared with simulation data for
alkane conformational equilibria in water as well as a model for the formation of a hydrophobic core of a
protein. The modified PMF expansion can be extended to solutes with attractive interactions. The observed
accuracy, computational efficiency, and atomic detail of the model suggest that this simple hydrophobic force
field can lead to a molecular alternative for phenomenological surface-area models with applications in ligand-
binding and protein-folding studies.

Introduction

Protein folding,1-3 membrane formation,4 drug binding to
proteins,5 and the formation of amyloid plaques in Alzheimer’s
disease tissues6 are largely driven by hydrophobic interactions.
In a simplified view, water squeezes out nonpolar molecules
or groups,7 resulting in attractive interactions between hydro-
phobic solutes. From this simple picture one already expects
many-body effects to be important. The most commonly used
phenomenologicalmodel of hydrophobic interactions assumes
a proportionality of hydration free energies to surface areas,
corresponding to an effective many-body potential. Various
definitions of surface areas, corrections for curvature on a
molecular scale, and proportionality constants are in use,8-16

with the latter differing for dissolution and conformational
changes of nonpolar molecules.17 Scaled-particle theory (SPT)18

motivates the various surface-area models of hydrophobic
hydration and interactions. In SPT adapted to hydrophobic
hydration,19,20 the exact results in the limit of small solutes are
interpolated with the expected limit for macroscopically large
solutes. However, molecular processes of drug binding, protein
folding, and conformational equilibria fall in the gap well above
the small-solute limit and far from the macroscopic limit. The
resulting lack of atomic detail of surface-area models in this
molecular regime may thus be seen as a reason for their
ambiguities17 and shortcomings.21

Hydrophobic effects have been studied with numerous
theoretical models and computer simulations.8-17,19-57 A thor-
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oughly molecular model of hydrophobic hydration and interac-
tions has been developed58 that uses information-theory (IT)
concepts59 to calculate approximately the free energy of cavity
formation49-52 in water. In its simplest form, the IT model is
related to Pratt-Chandler integral equation theory30 and Gauss-
ian field models34 (for a discussion, see refs 58, 60-62). IT
calculations led to a molecular model for the temperature
dependence of hydrophobic hydration relevant for hydrophobic
contributions to protein-unfolding entropies.63 In addition, IT
calculations also led to a novel description of the pressure-
induced denaturation of proteins,64 addressing a longstanding
puzzle in protein stability.65 However, the simplest IT model
requires the calculation of absolute solvation free energies.58,61

This limits applications requiring high computational efficiency
such as drug binding to proteins. Extensions of the IT model to
inhomogeneous systems have been discussed.61 However, those
are more complicated, involving solute-water correlation
functions.

Here, we follow a different route to developing a simple,
effective force-field model of hydrophobic interactions. We start
from an expansion of then-body interaction free energy into
two-body, three-body, and higher-order contributions. That
modified potential-of-mean-force (PMF) expansion is motivated
by our earlier work revealing the shortcomings of the conven-
tional PMF expansion in the limit of close contact or overlap.66

For the simplest nonpolar solutes in water, hard particles, the
modified PMF expansion is exact in the two limiting cases of
infinite separation and perfect overlap, even when solute-solute
interactions are not included. For soft particles with attractive
interactions, the expansion is exact in those two limits within
first-order perturbation theory.

We then use the IT model to parametrize the resulting force
field for hydrocarbon solutes. In addition to two-body interac-
tions, we derive a simple expression for the many-body terms
involving volumes of intersection between water-exclusion

spheres. This results in a short-ranged and computationally
efficient expression for the many-body contributions to the force
field.

We compare the predictions of the hydrophobic force field
with various simulation data for free energies of alkane
conformational equilibria in water.67 In addition, we also
compare it with a model for the formation of the hydrophobic
core of a protein involving a cluster of fourteen methane
molecules in water.21

The resulting force-field description of hydrophobic interac-
tions provides a computationally efficient, molecular alternative
to phenomenological surface-area models. Potential applications
include drug binding to proteins and protein-folding phenomena.

Modified Potential-of-Mean-Force Expansion

In the following, we consider the solvation free energy
µ(n)(r1,...,rn) of n identical hard-sphere solutes in water, with
straightforward generalizations to nonidentical, nonspherical
particles. The solute particles 1,...,n can, e.g., represent the
carbon groups of an alkane, or of a nonpolar amino acid side
chain such as leucine. The size of the hard spheres corresponds
to the water-exclusion volume. For methane and CHn groups, a
typical distance of closest approach of a water-oxygen atom
to the center of the sphere is 0.33 nm.58 The excluded volume
of two solute spheres is illustrated in Figure 1. The free energy
of hydration ofn hard-sphere solutes is that of forming a cavity
corresponding to the union of the exclusion volumesνi of the
particles 1,...,n,

We know from previous work on the structural hydration of
nonpolar solutes in water66 that a conventional PMF expansion
for the free energy,68

is inadequate for chemically bonded carbon groups.δµ(1)(r i) )
µ(1)(r i) is the free energy of hydration of a single particle,
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Figure 1. Schematic representation of the excluded volume of two
solute spheres S, each of radiusrS. Also shown is a water molecule W
of radiusrW. The joint excluded volume of the two solute spheres is
the total shaded area, defined as the union of the two spheres of radius
d ) rS + rW inaccessible to water. For methane and CHn groups, an
exclusion radius ofd ) 0.33 nm is used, corresponding to the distance
at which the solute-water radial distribution function between methane
and water for typical models reaches a value of one.58

µ(n)(r1,...,rn) ) µ( ∪
i)1

n
νi) (1)

µ(n)(r1,...,rn) ) ∑
i)1

n

δµ(1)(r i) + ∑
i,j)1
i<j

n

δµ(2)(r i,r j) +

∑
i,j,k)1
i<j<k

n

δµ(3)(r i,r j,r k) + ... (2)
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δµ(2)(r i,r j) is a two-body PMF, etc. This is caused by an over-
counting of solvent-excluded volumes, such that in the limit of
perfect overlap of then particles, one would have to include all
ordersδµ(1) to δµ(n) for the expansion to become exact.

We can avoid the problem of overlapping volumes by
modifying the PMF expansion eq 2

whereµ(νi ∩ νj) and µ(νi ∩ νj ∩ νk) are the free energies of
forming cavities with shape and size corresponding to the
volumes of intersection of two (i, j) and three particles (i, j, k),
respectively. Note that the contributions from intersection
volumes will be zero beyond some orderl of intersections.
Figure 2 schematically represents the modified PMF expansion
for three spheres.

Equation 3 can easily be inverted68 to give the effective pair,
triplet, and higher-order interactionsω(2)(r1,r2), ω(3)(r1,r2,r3),
andω(k)(r1,...,r k). For the pair interaction, we find

For distances at which the cavity volumes of the two particles
do not overlap (ν1 ∩ ν2 ) 0), ω(2)(r1,r2) is identical to the
conventional PMFδµ(2)(r1,r2) defined by eq 2. For shorter
distances, a correctionµ(ν1 ∩ ν2) is added that guarantees that
ω(2) vanishes at perfect overlap,ω(2)(r ,r ))0.

Equation 3 is exact withω(2) ) ω(3) ) ... ) ω(n) ) 0 in both
limits of infinite separation and of complete overlap of the
particles 1,...,n. In the infinite-separation limit (|r i - r j| f ∞
for all i,j), we simply haveµ(n)(r1,...,rn) ) ∑i)1

n µ(1)(r i). In the
limit of perfect overlap ofn identical particles, we obtain the
correct resultµ(n)(r ,..., r ) ) µ(1)(r ) because each of the volumes
of intersectionνi ∩ νj, νi ∩ νj ∩ νk, etc., is identical to that of
a single sphere, such that

where we used that the sum of binomial coefficients is (1- 1)n

- 1. Equation 5 is a consequence of the inclusion-exclusion
principle. By definition, we therefore have

that is, the effective interactionsω(k) are zero both in the limit
of infinite separation and perfect overlap. We expect that
truncation of theω expansion at the pair level introduces only
a small error, with many-body effects contained largely in the
intersection-volume terms,µ(∩iνi).

Additional Many-Body Effects

Many-body interactions have not been eliminated completely
in the modified PMF expansion. For a single sphere interacting
with n - 1 perfectly overlapping spheres, the many-body
interactionsω(n) can be calculated exactly

This means that the higher-order correlations for this particular
case are of identical magnitude and alternating sign. The error
introduced by truncating the modified PMF expansion eq 3 at
the pair level is

This is the expected result correcting for the over-counting of
n - 2 pair interactions whenn - 1 particles perfectly overlap.

From this analysis, we can estimate the effect of neglected
many-body interactions between a single methane probe and
the chemically bonded carbon groups in a linear alkane
molecule. Truncation at the pair level overestimates the total
interaction free energy∑ω(k) (k g 2) by approximately a factor
of 2 since every pair of bonded carbons is close to the overlap
limit. This suggests two corrections: (1) by using an effectively
scaledω(2), or (2) by replacing the two bonded groups with an
interaction site on the bond69 in the calculation of the pair
interactions,∑ω(2)(r i,r j). Here, we will scale the theoreticalω(2)

by a factor 0.5 to account for many-body effects neglected in a
pair-level truncation of the modified PMF expansion.

Alternatively, we could include the higher-order interactions
ω(k) for k g 3 calculated from IT. Equation 7 also suggests
approximate expressions forω(k) for k g 3:

wherefk(r) is an appropriately chosen scaling function.
In applications involving a large number of interaction sites,

such as drug binding to proteins, both uncertainties in the
potential parametrization and additional many-body effects
contained inω(k) for k g 3 are likely to become relevant. In
those cases, proximity approximations involving only interac-
tions with the nearest sites46,66,67,70 could provide suitable
alternatives to includingω(k) with k g 3.

Soft Repulsive and Attractive Solute-Water Interactions

The modified PMF expansion can be generalized to solutes
with soft repulsive and attractive solute-solvent interactions.

(69) Pratt, L. R.; Chandler, D.Methods Enzymol.1986, 127, 48.
(70) Ashbaugh, H. S.; Paulaitis, M. E.J. Phys. Chem.1996, 100, 1900.

Figure 2. Schematic representation of the modified PMF expan-
sion for three spherical solutes. Volume termsµ(1)(r i), µ(νi ∩ νj), and
µ(ν1 ∩ ν2 ∩ ν3), are shown as outlined areas; pair and triplet interactions
are shown as pair-bondsω(2) and a triangleω(3), respectively.

µ(n)(r1,...,rn) ) ∑
i)1

n

δµ(1)(r i)

+ ∑
i,j)1
i<j

n

[ω(2)(r i,r j) - µ(νi ∩ νj)]

+ ∑
i,j,k)1
i<j<k

n

[ω(3)(r i,r j,r k) + µ(νi ∩ νj ∩ νk)] + ...

+ ω(n)(r1,...,rn) - (-1)nµ( ∩
i)1

n
νi) (3)

ω(2)(r1,r2) ) µ(2)(r1,r2) - δµ(1)(r1) - δµ(1)(r2)

+ µ(ν1 ∩ ν2) (4)

µ(n)(r ,...,r ) ) -µ(1)(r )∑
k)1

n

(-1)n( k
n) ) µ(1)(r ) (5)

ω(2)(r ,r ) ) ω(3)(r ,r ,r ) ) ... ) ω(n)(r ,...,r ) ) 0 (6)

ω(n)(r ,r ,...,r ,s) ) (-1)nω(2)(r ,s) (7)

µ(n)(r ,r ,...,r ,s) - µpair-trunc
(n) (r ,r ,...,r ,s) ) (2 - n) ω(2)(r ,s) (8)

ω(k)(r1,...,r k) ≈ (-1)kω(2)( max
1ei,jek

|r j - r i|) ×
fk( min

1ei,jek
|r j - r i|) (9)
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We first consider a collection of hard sphere solutes of equal
size in water with an additional weak attractive solute-water
interaction (e.g., 1/r6 or Yukawa potential). The goal is again
to find a modified PMF expansion that is exact in both limits
of perfect overlap and infinite separation withω(k) ) 0.
Perturbation theory71 approximates the hydration free energy
of an individual solute as

whereµHS is the hydration free energy of the hard-sphere solute,
and 〈uatt〉 is the attractive solute-water interaction energy,
averaged over the hydration structure of the hard solute. This
first-order perturbation treatment was found to give accurate
results for a wide range of solute sizes and solute-water
interaction strengths.71

In the limit of n overlapping hard-sphere solutes with
attractive solute-water interactions, the corresponding perturba-
tion expression for the hydration free energy is

The following modified PMF expansion will reproduce this first-
order perturbation result

In eq 12, many-body effects due to overlapping volumes of
water-exclusion spheres are taken into account by including the
cavity-formation free energies of hard particlesµhard.

For soft repulsive and attractive solute-water interactions,
we can either define effective hard-sphere radii and use eq 12
to define the corresponding effective interactionsω(k), or we
can separate the solute-water interactions into repulsive and
attractive contributions, by using for instance a Weeks-
Chandler-Andersen separation.72 In the latter case, a suitable
definition for the solute-water interaction potential of the
“intersection” ofn solutes with a distance-dependent repulsive
solute-water interactionurep(r) is obtained by using the interac-
tion of a water molecule at positionr with the most distant
solute site

For hard solute-water interactions, this definition coincides with
that of intersecting cavity volumes. A suitable PMF expansion

would then define the effective interactionsω(k) by replacing
µhard in eq 12 withµrep, corresponding to solute-water interac-
tions defined by eq 13.

Note that even for strong solute-water interactions such as
hydrogen bonds or ionic interactions, we can use the modified
PMF expansion to define effective interactionsω(k) and expect
that many-body contributions due to volume exclusion are
approximately included. Additional many-body effects due to
direct electrostatic interactions have been studied by Ashbaugh
and Paulaitis.73 However, further analysis and comparisons with
explicit computer simulations are required to establish the
usefulness of anω(k)-expansion for hydrogen-bond or ionic
interactions.

Parametrization of the Hydrophobic Force Field

We simplify and parametrize the modified PMF expansion
eq 3 to derive a many-body force-field representation of
hydrophobic interactions. The IT model of hydrophobic hydra-
tion58,61 allows us to calculate approximate free energies of
forming molecular-size cavities in water. Here, we use it to
determine the chemical potential of hard particles defined by
the volume of intersection ofk spheres. In the following
numerical calculations, the spheres are assumed to be of methane
size (i.e., 0.33 nm distance of closest approach of a water oxygen
to the center of the sphere).58

First, we observe that the volumes of intersection ofk spheres
of equal radii are convex-shaped objects with a volume less
than that of a single sphere. This lets us assume that the chemical
potential of all these intersection volumes is approximately a
monotonic function of their volume, irrespective of the specific
shapes. This is indeed supported by the IT calculations. Shown
in Figure 3 is the chemical potential of particles corresponding
to the volume of intersection of two and more spheres as a
function of their volumeV. We find that free energies for
representative volumes of intersection of more than two spheres
fall almost exactly onto the curve of the two-sphere overlap.
We also find the correct limiting behavior- kBT ln(1 - FV)
for V f 0, with kB the Boltzmann constant,T the temperature,
andF the bulk density of the solvent water.18-20
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µ(1) ≈ µHS + 〈uatt〉 (10)

µ(n) ≈ µHS + n〈uatt〉 (11)

µ(n)(r1,...,rn) ) ∑
i)1

n

δµ(1)(r i)

+ ∑
i,j)1
i<j

n

[ω(2)(r i,r j) - µhard(νi ∩ νj)]

+ ∑
i,j,k)1
i<j<k

n

[ω(3)(r i,r j,r k) + µhard(νi ∩ νj ∩ νk)] + ...

+ ω(n)(r1,...,rn) - (-1)nµhard( ∩
i)1

n
νi) (12)

urep
(n)(r ;r1,...,rn) ) urep( max

1eken
|r - r k|) (13)

Figure 3. Hydration free energy in units of kcal/mol for particles
corresponding to the volumes of intersection of two (solid line), three
(plus symbols), four (open circles), five (triangles), and six spheres
(filled circles) as a function of their volumeV. The free energies are
calculated from IT for intersection volumes corresponding to the six
hexane trajectories of Table 2, with dihedral angle steps of 10°. Also
shown is the limiting curve-kBT ln(1 - FV) from SPT which is exact
for V f 0 (dot-dashed line). The inset shows the deviations from the
curve fitted to the two-sphere data, as described in the Appendix.
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This allows us to approximate the chemical potential of
excluded-volume particles formed by the intersection ofk
spheres as a function of their volume irrespective of shape

where µj(V) is a function of the magnitude of the volumeV
irrespective of its shape.µj(V) has been fitted to the IT results
for the overlap of two spheres of identical radii (see Appendix).
This simplifies the practical calculation of the many-body
interactionsµ(νi ∩ νj), µ(νi ∩ νj ∩ νk), etc., to the calculation
of the volume of intersection of spheres.74-85

We can use IT also to calculate the effective interactionsω(n).
Here, we truncate theω expansion at the pair level, assuming
ω(k) ) 0 for k g 3. The pair interactionω(2) is defined in eq 4.
All terms on the right-hand side can be calculated by using the
IT model. However, we scaleω(2) by a factor of 0.5 to account
approximately for neglected higher-order interactions, as dis-
cussed above. Table 1 compiles the positions of the nodes,
amplitudes, and second derivatives of the resulting scaledω(2)(r)
(r ) |r2 - r1|) in a cubic-spline representation86 with a cutoff
of r ) 1.2 nm [ω(2)(r) ) 0 for r g 1.2 nm]. Figure 4 shows the
pair interactionω(2)(r). We find a maximum forω(2)(r) of about
0.4 kcal/mol atr ≈ 0.3 nm, correcting for the overestimated
free-energy gains of bringing cavities to overlap when only the
volume contributions are considered in eq 3. A minimum near
r ≈ 0.7 nm stabilizes solvent-separated configurations.

Comparison to Simulation Data

In the following, we compare the hydrophobic force field to
explicit computer simulation data by Ashbaugh et al.67 for alkane
conformations in water, and by Rank and Baker21 for a methane
cluster in water. Ashbaugh et al.67 calculated the solvent
contribution to the free energy (or PMF) along six trajectories
of hexane, two of pentane, and one of butane, each correspond-
ing to changing one of the dihedral angles and keeping the others
fixed (see Table 2). Rank and Baker21 studied the free energy
of changing the length of the edge of a cubic cluster of 14

methane molecules in a face-centered cubic lattice. Bringing
the methane molecules into contact corresponds to the formation
of a hydrophobic cluster comparable in size to those observed
in protein cores.

Figure 5 compares the simulation67 and force-field results for
the solvent-contributions to the conformational free energies of
the nine alkane trajectories. We find excellent agreement for
all simulation PMFs. The modified PMF expansion reproduces
not only the positions of the minima but also the amplitudes of
the curves. The main difference is that the simulation curves
tend to be somewhat more structured for dihedral anglesæ,
120° < |æ| e 180°. Note, however, that the estimated statistical
errors in the simulation data are about 0.2-0.4 kcal/mol and
thus larger than the observed differences.

Rank and Baker21 studied the hydration free energy of a
cluster of 14 methane molecules in a face-centered cubic
arrangement. A strong hydrophobic attraction was observed for
the formation of a mini-hydrophobic core, together with a high
barrier for cluster formation. Surface-area models failed quali-
tatively and quantitatively to reproduce the observed hydration
free energy for cluster formation.

Figure 6 compares the force-field and simulation curves for
the hydration free energy as a function of the lengthd of the
cubic cluster. Again, we observe good agreement between the
optimized force field and the simulation data. The main
differences are a shift by about 0.03 nm towards largerr values,
and a less pronounced second maximum. The latter might be
caused in part by cutoff effects in the simulations. Alternatively,
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Table 1. Nodesri (in nm), Function Valuesyi (in kcal/mol), and
Second Derivativesy′′i [in kcal/(mol nm2)] of the Pair Interaction
ω(2)(r), as Represented by a Cubic Spline Function

ri yi y′′i
0.000000000 0.000000000 0.000000000
0.241081824 0.355013511 -10.160976371
0.440195386 0.351795405 0.066022732
0.643794334 0.097754778 -26.618586944
0.668034896 0.023946352 55.015275692
0.827075306 0.001397748 -13.222689211
0.983437774 0.002274700 3.041789473
1.200000000 0.000000000 -1.375389056

Figure 4. Pair interactionω(2)(r) in units of kcal/mol as a function of
the distancer in units of nm (solid line). Theω(2)(r) shown was
calculated from IT and scaled by a factor 0.5. A quadratic function
was added betweenr ) 0 and 0.325 nm to correct for the non-additivity
in the IT free energy for two spheres.61 A cubic-spline representation
of ω(2)(r) is given in Table 1.

Table 2. Simulation Trajectories67 for Free-Energy Profiles of
Alkanes along Torsional Degrees of Freedoma

trajectory æ1 æ2 æ3

Butane
x φ

Pentane
gx 60° φ
tx 180° φ

Hexane
gxg 60° φ 60°
txt 180° φ 180°
gg′x 60° 60° φ
gtx 60° 180° φ
xg′t φ -60° 180°
xtt φ 180° 180°

a φ denotes the variable torsional angle.g, g′, andt stand for gauche,
gauche-prime and trans dihedral angles (60°, -60°, and 180°).

µ(ν1 ∩ ν2 ∩ ... ∩ νk) ≈ µj(ν1 ∩ ν2 ∩ ... ∩ νk) (14)
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the scaling ofω(2)(r) by a factor of 0.5 might underestimate the
pair interactions between non-overlapping methane molecules.
To investigate this possibility, we have scaledω(2)(r) from IT
only for distancesr smaller thanr ) 0.6778 nm, where it crosses
the zero axis just beyond the overlap limit ofr ) 0.66 nm. The
resulting free-energy profile is also shown in Figure 6 and indeed
has a more pronounced second maximum and a solvent-
separated minimum atd ≈ 1 nm considerably lower than the
limit of infinite separation. We note that the alkane curves of
Figure 5 are left unchanged by this partial scaling, as the largest
pair distance even for the fully extended hexane is below the
overlap limit of r ) 0.66 nm. Inclusion ofω(3) is not likely to
improve the agreement further. The three-body interactionsω(3)

are expected to be of short range with only small contributions
at the distance of the second maximum in the cluster formation
PMF of Figure 6.

The positional shift of the the free energy curves may be
due in part to a different water model (TIP4P vs SPC water;
whereas SPC water was used consistently in the alkane studies
discussed above). In addition, large statistical uncertainties were
reported for the simulation data caused by insufficient statistical
convergence.21 Figure 8 of ref 21 illustrates these uncertainties
in the simulation curves, resulting in considerable variations in
the positions of the extrema as well as the amplitudes. For
instance, the position of the desolvation barrier in the five
reported curves varies by about 0.1 nm betweenr ) 0.75 and
0.85 nm. The observed agreement between the free-energy
profile calculated from the modified PMF expansion and the

simulation data can thus be considered excellent when these
uncertainties in the reference simulation data are taken into
account. In particular, the height of the kinetically important
desolvation barrier at aboutr ) 0.8 nm agrees exactly with the
simulation result by Rank and Baker.21

Concluding Remarks

We have developed a hydrophobic force field as a molecular
alternative to phenomenological surface-area models. This force
field takes into account the many-body contributions arising
from overlapping cavity volumes. The importance of a careful
treatment of overlapping solvent-exclusion volumes has been
realized before, leading to the “hydration-shell model” of
solvation thermodynamics24-26 and related approaches.80 The
theoretical basis of the hydrophobic force field is a modified
PMF expansion which is exact for hard solutes in both limits
of perfect overlap and infinite separation even in the absence
of interaction termsω(k). This modified PMF expansion thus
reduces the non-additivity problems identified for hydrophobic
clusters which led to the development of so-called proximity
approximations for hydrophobic solvation.46,66,67,70Alternatively,
Pellegrini et al.87-89 estimate conformational free energies by
using a truncated PMF expansion90,91 of the inhomogeneous
solVentdensity. However, a pair-level truncation (i.e., Kirkwood
superposition approximation) in the solvent-density expansion
leads to small errors even in methane-pair PMFs. These errors
are expected to be amplified for larger hydrophobic assemblies
for which solvent densities at contact have been shown to be
over-estimated by the Kirkwood superposition approximation.66
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Figure 5. Comparison of the hydration free energies for alkane
trajectories obtained from simulations (symbols)67 and the hydrophobic
force field (lines). The conformational free energies (or PMFs) are
shown in units of kcal/mol as a function of a dihedral angle in degrees
(see Table 2 for details). Panels a and b show results for the six hexane
trajectories. Panel c shows the results for the butane and the two pentane
trajectories. The total free-energy profiles can be obtained by adding
the internal energy contributions to the hydration free energies shown
here.

Figure 6. Comparison of the free energies of hydration of a cubic
14-methane cluster in a face-centered cubic arrangement obtained from
simulation (dashed line)21 and the hydrophobic force field (solid line).
Also shown is the free-energy profile obtained by scalingω(2)(r) from
IT by a factor of 0.5 only for distancesr < 0.6778 nm (dot-dashed
line). At r ) 0.6778 nm,ω(2)(r) crosses the zero-axis just beyond the
overlap limit of r ) 0.66 nm. This partial scaling introduces a kink
into ω(2)(r). The conformational free energies (or PMFs) are shown in
units of kcal/mol as a function of the lengthd (in nm) of the edge of
the cubic cluster. The total free-energy profiles can be obtained by
adding the direct methane-methane interaction energy to the hydration
free-energy profiles shown here. The error bar indicates the variations
in the barrier position in the simulation data between different runs.21
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Two approximations make the hydrophobic force field
developed here a computationally efficient method for free
energy calculations: (1) We find that the hydration free energies
of cavity volumes corresponding to intersections of spheres of
equal radii can be approximated accurately as a function of the
volume alone, irrespective of the shape; (2) the expansion in
many-body interactionsω(k) can be truncated at the pair level.
The parameters of the hydrophobic force field can be calculated
directly from the IT model of hydrophobic interactions.58 The
pair interactionω(2)(r) between methane-like solutes calculated
from IT is scaled by a factor 0.5 to account for additional many-
body contributions, but more refined approaches have been
discussed.

With these approximations, we find that the hydrophobic force
field reproduces simulation data for alkane conformational
equilibria.67 A more challenging test is the formation of a mini-
hydrophobic core by bringing 14 methane molecules together
in a close-packed configuration.21 The free-energy profile of
cluster formation exhibits barriers of almost 10 kcal/mol and
free energy gains from the desolvation barrier to the contact
minimum (neard ) 0.55 nm) of about 15 kcal/mol. The
hydrophobic force field also reproduces this highly collective
aggregate formation, where a conventional two-body PMF
expansion and surface-area models fail dramatically.21 We
believe that the hydrophobic force field developed here provides
a molecular alternative to commonly used surface-area models
based on its accuracy, computational efficiency, and formal
simplicity.

The IT model can be used to parametrize the hydrophobic
force field for different temperatures63 and pressures with
potential applications to the phase behavior of hydrophobically-
stabilized aggregates.64 Moreover, the statistical-mechanical
foundation of the modified PMF expansion makes this approach
well-suited to include also attractive interactions. We have
briefly discussed a perturbative approach which will be explored
in future studies. In principle, a complete force-field representa-
tion of hydration free energies can be derived on the basis of
the modified PMF expansion. At least for solutes with weak
attractions to water, the inclusion of the many-body cavity
effects should result in a considerable increase in accuracy.

Applications include ligand binding and macromolecular com-
plex formation, as well as protein folding where many-body
interactions are expected to be important.92 However, further
analysis and possibly optimization is necessary to achieve the
accuracy required for applications such as drug binding.
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Appendix

All IT calculations58 reported here are performed for the SPC
model of water93 at a temperature of 298 K and a number density
of 33.33 nm-3. A flat default model was used in the IT
calculations.58,61For the dependence of the hydration free energy
on the volume of intersection, eq 14, we fitted the two-sphere
intersection data to a function

for d ) 0.33 nm. With µj in units of kcal/mol,V in units
of nm3, and kBT ≈ 0.59219 kcal/mol, we finda1 )
32.0966142769287, a2 ) 467.831641477464, a3 )
27068.1637856813,b1 ) -6.31717234308783,b2 )
166.339344803134,n ) 3.68238239111433. This fit ofµj(V)
should be accurate for cavity spheres also of different sizes than
those studied here (exclusion radius 0.33 nm).
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µj(V)
kBT

)
a1V + a2V

2 + a3V
n

1 + b1V + b2V
2

for V e 4πd3/3 (15)
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